Serveur d'exploration sur le cobalt au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web

Identifieur interne : 000603 ( Main/Exploration ); précédent : 000602; suivant : 000604

Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web

Auteurs : Sabria Barka [France, Tunisie] ; Jean-François Pavillon [France] ; Claude Amiard-Triquet [France]

Source :

RBID : ISTEX:E3A839290B34B43BE8C242B40DDBBF00C0FA526B

English descriptors

Abstract

The marine copepod Tigriopus brevicornis is a benthic microcrustacean inhabiting splashed rock pools in the intertidal zone. The genus has a worldwide distribution, and some species play an important role as a link in trophic webs. It is well established that many crustaceans are able to survive in contaminated environments by storing metallic pollutants in detoxified form, and thus, they may represent a source of contaminants for their predators. The present study was designed to determine the distribution of bioaccumulated metals, both essential and nonessential, with a view to assessing their availability to the next trophic level. Groups of 1000–1500 adult copepods were exposed for 1–14 days to Ag, Cd, Cu, Hg, Ni, and Zn in water. Three concentrations, chosen to be realistic in comparison with those encountered in polluted environments, were tested for each metal. Copepods were homogenized and metals were analyzed in supernatants (i.e., metals stored in soluble form in soft tissues or easily remobilized from the exoskeleton) and pellets (including metal‐rich detoxificatory granules or with cellular debris) recovered after centrifugation. Another experiment, consisting of desorption tests, was designed to evaluate the fraction of metals loosely bound onto the exoskeleton. The bioaccumulation ability is highly variable, as shown by the ratios between the concentrations reached in T. brevicornis experimentally exposed to different metals (at higher dose and at day 14) and those in controls (7, 12, 18, 26, 53, and 99, respectively, for Zn, Cu, Ni, Cd, Ag, and Hg). Cu, Zn, and Ni concentrations in copepods increased linearly with time over the whole range of exposure concentrations, whereas a plateau body metal concentration was reached with time particularly at the highest exposure concentrations for Cd, Ag, and Hg. Metals bound onto the exoskeleton were remobilized to different extents, the percentages of desorption being 11, 14, 16, 19, 31, and 32, respectively, for Zn, Cd, Cu, Ni, Ag, and Hg. Metals mainly present in the supernatant (Cd, Ni, Zn) are probably more able to be transferred along a food chain than those which were equally distributed between soluble and insoluble fractions (Ag, Cu, and Hg). © 2009 Wiley Periodicals, Inc. Environ Toxicol 25: 350–360, 2010.

Url:
DOI: 10.1002/tox.20505


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web</title>
<author>
<name sortKey="Barka, Sabria" sort="Barka, Sabria" uniqKey="Barka S" first="Sabria" last="Barka">Sabria Barka</name>
</author>
<author>
<name sortKey="Pavillon, Jean Rancois" sort="Pavillon, Jean Rancois" uniqKey="Pavillon J" first="Jean-François" last="Pavillon">Jean-François Pavillon</name>
</author>
<author>
<name sortKey="Amiard Riquet, Claude" sort="Amiard Riquet, Claude" uniqKey="Amiard Riquet C" first="Claude" last="Amiard-Triquet">Claude Amiard-Triquet</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:E3A839290B34B43BE8C242B40DDBBF00C0FA526B</idno>
<date when="2010" year="2010">2010</date>
<idno type="doi">10.1002/tox.20505</idno>
<idno type="url">https://api.istex.fr/document/E3A839290B34B43BE8C242B40DDBBF00C0FA526B/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001050</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001050</idno>
<idno type="wicri:Area/Istex/Curation">000B85</idno>
<idno type="wicri:Area/Istex/Checkpoint">000178</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000178</idno>
<idno type="wicri:doubleKey">1520-4081:2010:Barka S:metal:distributions:in</idno>
<idno type="wicri:Area/Main/Merge">000606</idno>
<idno type="wicri:Area/Main/Curation">000603</idno>
<idno type="wicri:Area/Main/Exploration">000603</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web</title>
<author>
<name sortKey="Barka, Sabria" sort="Barka, Sabria" uniqKey="Barka S" first="Sabria" last="Barka">Sabria Barka</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Toxicologie Marine et Environnementale, UR 09‐03, IPEI, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pavillon, Jean Rancois" sort="Pavillon, Jean Rancois" uniqKey="Pavillon J" first="Jean-François" last="Pavillon">Jean-François Pavillon</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut Océanographique, LPEM, CNRS/GDR 1117, Paris</wicri:regionArea>
<placeName>
<region type="region">Île-de-France</region>
<region type="old region">Île-de-France</region>
<settlement type="city">Paris</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Amiard Riquet, Claude" sort="Amiard Riquet, Claude" uniqKey="Amiard Riquet C" first="Claude" last="Amiard-Triquet">Claude Amiard-Triquet</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>ISOMer, SMAB, Service d'Ecotoxicologie, CNRS/GDR 1117, Nantes</wicri:regionArea>
<placeName>
<region type="region">Pays de la Loire</region>
<region type="old region">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Environmental Toxicology</title>
<title level="j" type="abbrev">Environ. Toxicol.</title>
<idno type="ISSN">1520-4081</idno>
<idno type="eISSN">1522-7278</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2010-08">2010-08</date>
<biblScope unit="volume">25</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="350">350</biblScope>
<biblScope unit="page" to="360">360</biblScope>
</imprint>
<idno type="ISSN">1520-4081</idno>
</series>
<idno type="istex">E3A839290B34B43BE8C242B40DDBBF00C0FA526B</idno>
<idno type="DOI">10.1002/tox.20505</idno>
<idno type="ArticleID">TOX20505</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1520-4081</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Tigriopus brevicornis</term>
<term>bioaccumulation</term>
<term>copepods</term>
<term>metals</term>
<term>tissular distribution</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The marine copepod Tigriopus brevicornis is a benthic microcrustacean inhabiting splashed rock pools in the intertidal zone. The genus has a worldwide distribution, and some species play an important role as a link in trophic webs. It is well established that many crustaceans are able to survive in contaminated environments by storing metallic pollutants in detoxified form, and thus, they may represent a source of contaminants for their predators. The present study was designed to determine the distribution of bioaccumulated metals, both essential and nonessential, with a view to assessing their availability to the next trophic level. Groups of 1000–1500 adult copepods were exposed for 1–14 days to Ag, Cd, Cu, Hg, Ni, and Zn in water. Three concentrations, chosen to be realistic in comparison with those encountered in polluted environments, were tested for each metal. Copepods were homogenized and metals were analyzed in supernatants (i.e., metals stored in soluble form in soft tissues or easily remobilized from the exoskeleton) and pellets (including metal‐rich detoxificatory granules or with cellular debris) recovered after centrifugation. Another experiment, consisting of desorption tests, was designed to evaluate the fraction of metals loosely bound onto the exoskeleton. The bioaccumulation ability is highly variable, as shown by the ratios between the concentrations reached in T. brevicornis experimentally exposed to different metals (at higher dose and at day 14) and those in controls (7, 12, 18, 26, 53, and 99, respectively, for Zn, Cu, Ni, Cd, Ag, and Hg). Cu, Zn, and Ni concentrations in copepods increased linearly with time over the whole range of exposure concentrations, whereas a plateau body metal concentration was reached with time particularly at the highest exposure concentrations for Cd, Ag, and Hg. Metals bound onto the exoskeleton were remobilized to different extents, the percentages of desorption being 11, 14, 16, 19, 31, and 32, respectively, for Zn, Cd, Cu, Ni, Ag, and Hg. Metals mainly present in the supernatant (Cd, Ni, Zn) are probably more able to be transferred along a food chain than those which were equally distributed between soluble and insoluble fractions (Ag, Cu, and Hg). © 2009 Wiley Periodicals, Inc. Environ Toxicol 25: 350–360, 2010.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
<li>Tunisie</li>
</country>
<region>
<li>Pays de la Loire</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Nantes</li>
<li>Paris</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Île-de-France">
<name sortKey="Barka, Sabria" sort="Barka, Sabria" uniqKey="Barka S" first="Sabria" last="Barka">Sabria Barka</name>
</region>
<name sortKey="Amiard Riquet, Claude" sort="Amiard Riquet, Claude" uniqKey="Amiard Riquet C" first="Claude" last="Amiard-Triquet">Claude Amiard-Triquet</name>
<name sortKey="Pavillon, Jean Rancois" sort="Pavillon, Jean Rancois" uniqKey="Pavillon J" first="Jean-François" last="Pavillon">Jean-François Pavillon</name>
</country>
<country name="Tunisie">
<noRegion>
<name sortKey="Barka, Sabria" sort="Barka, Sabria" uniqKey="Barka S" first="Sabria" last="Barka">Sabria Barka</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/CobaltMaghrebV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000603 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000603 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    CobaltMaghrebV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:E3A839290B34B43BE8C242B40DDBBF00C0FA526B
   |texte=   Metal distributions in Tigriopus brevicornis (Crustacea, Copepoda) exposed to copper, zinc, nickel, cadmium, silver, and mercury, and implication for subsequent transfer in the food web
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Tue Nov 14 12:56:51 2017. Site generation: Mon Feb 12 07:59:49 2024